Self-Assessment for Grade 11 College Math (MBF3C)

Students who are registered for Grade 11 College Math (MBF3C) may benefit from a self evaluation and review of the following expectations from Grade 10 Applied Math (MFM2P).

The questions in this self-assessment reflect some of the key ideas learned in prerequisite courses. They do not represent the problem solving approach or the rich experience that students would be exposed to in a classroom. The intention is for students to revisit some key concepts and, if needed, access review materials in an informal environment at a pace that is comfortable for the student.

Concept(s)	Sample Question	How comfortable do you feel with this concept?	Link(s) to explore concept further
I can solve first-degree equations involving one variable	1. Solve: a) $8 x-13=-61$ b) $3(2 x-3)=12 x-57$	Very comfortable Somewhat comfortable Not at all comfortable	Solving Two-Step Equations Solving Multi-Step Equations
I can simplify second-degree polynomial expressions involving one variable that consist of the product of two binomials or the square of a binomial, using a variety of tools and strategies	2. Expand and simplify: a) $(2 x+3)(x+4)$ b) $(x-5)^{2}$	Very comfortable Somewhat comfortable comfortable	Distributive Property

I can factor using common factoring	3. Factor fully: $9 x-18$	Very comfortable Somewhat comfortable Not at all comfortable	Common Factoring
I can factor simple trinomials of the form $x^{2}+$ bx $+c$	4. Factor fully: $x^{2}-11 x+28$	Very comfortable Somewhat comfortable Not at all comfortable	Factoring $\times 2+\mathrm{bx}+\mathrm{c}$
I can factor the difference of squares of the form \mathbf{x}^{2} a^{2}	5. Factor fully: $x^{2}-16$	 Very comfortable Somewhat comfortable \square Not at all comfortable	Factoring Difference of Squares

I can identify the key features of a graph of a parabola	6. For the quadratic relation graphed below, state the: a) direction of the opening; b) coordinates of the vertex; c) equation of the axis of symmetry; d) x-intercepts; e) y-intercept; f) maximum or minimum value (and state which).	Very comfortable \qquad	Properties of Parabolas
I can solve problems involving right-angled triangles using the Pythagorean Theorem	7. Determine the measures of side $B C$ if the length of $A C$ is 6 cm and $A B$ is 10 cm .	Very comfortable	The Pythagorean Theorem
I can solve problems involving right-angled triangles using trigonometry	8. A surveyor is 40 m from the base of a building. The angle of elevation from the surveyor to the top of the building is 55°. What is the height of the building?	Very comfortable Somewhat comfortable Not at all comfortable	Tangent Ratio Trigonometric Ratios

I can solve problems involving the surface area of prisms and pyramids using the metric system or the imperial system, as appropriate
9. To make it easier to store and ship, an auto part is packaged in a triangular-prism box. How much cellophane would be required to cover this box?

Solutions to Sample Questions:

1. Solve:
a. $8 x-13=-61 \quad x=-6$
b. $3(2 x-3)=12 x-57 \quad x=8$
2. Expand and simplify:
a. $(2 x+3)(x+4)=2 x^{2}+11 x+12$
b. $(x-5)^{2}=x^{2}-10 x+25$
3. Factor fully: $9 x-18=9(x-2)$
4. Factor fully: $x^{2}-11 x+28=(x-4)(x-7)$
5. Factor fully: $x^{2}-16=(x+4)(x-4)$
6. For the quadratic relation graphed below, state the:
a. direction of the opening; The parabola opens upward.
b. coordinates of the vertex; The vertex is (1, -4)
c. equation of the axis of symmetry; The equation of the axis of symmetry is $\mathbf{x = 1}$
d. x -intercepts; The x -intercepts are -1 and 3
e. y-intercept; The y-intercept is $-\mathbf{3}$
f. maximum or minimum value (and state which). The minimum value is -4

7. Determine the measures of side $B C$ if the length of $A C$ is 6 cm and $A B$ is 10 cm .

The length of BC is 8 cm . (Use the Pythagorean Theorem.)
8. A surveyor is 40 m from the base of a building. The angle of elevation from the surveyor to the top of the building is 55°. What is the height of the building?

The building is 57.1 metres high.
Use SOH CAH TOA. Solve for h in the equation $\tan 55^{\circ}=\frac{h}{40}$
9. To make it easier to store and ship, an auto part is packaged in a triangular-prism box. How much cellophane would be required to cover this box?

Since the entire box will be covered by the cellophane, we must add the areas of all of the faces.
Area of triangle face: $\mathbf{2 4 0 0} \mathrm{cm}^{2}$ and there in an identical one on the other side
Area of bottom face: $10400 \mathbf{~ c m}^{2}$
Area of back face: $7800 \mathrm{~cm}^{2}$
Area of slanted face: $13000 \mathrm{~cm}^{2}$
(The hypotenuse of the triangle is 100 cm long, using the Pythagorean Theorem. Therefore the slanted face is 100 cm by 130 cm .)
Surface area $=\mathbf{2 (2 4 0 0)} \mathbf{+ 1 0 4 0 0 + 7 8 0 0 + 1 3 0 0 0 = 3 6 0 0 0 \mathrm { cm } ^ { 2 }}$
It will require $36000 \mathrm{~cm}^{2}$ of cellophane to cover the box.

