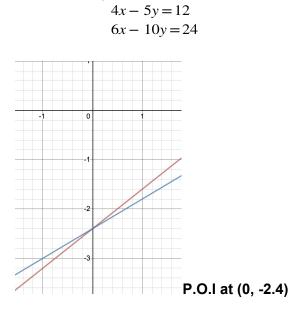

Self-Assessment for Grade 11 University/College Math (MCF3M)

Students who are registered for Grade 11 University/College Math, Functions and Applications (MCF3M) may benefit from a self evaluation and review of the following sample of expectations from Grade10 Academic Math (MPM2D) and Grade 10 Applied Math (MFM2P).

The questions in this self-assessment reflect some of the key ideas learned in prerequisite courses. They do not represent the problem solving approach or the rich experience that students would be exposed to in a classroom. The intention is for students to revisit some key concepts and, if needed, access review materials in an informal environment at a pace that is comfortable for the student.

Concept	Sample Question and Answer	How comfortable do you feel with this concept?	Link for further support
I can solve linear systems by graphing or by using the methods of substitution or elimination	 Solve the system of equations. 4x - 5y = 12 6x - 10y = 24 Some high school students held a bake sale recently to raise money for a field trip. They charged \$7 for fruit pies and \$10 for meat pies. They sold a total of 52 pies and earned \$424. How many of each type of pie did they sell? 	Image: Wery comfortable Image: Wery comfortable	Solve Linear Systems
I can evaluate an algebraic expression involving exponents, by substituting a value into the variable	3. If $x = \frac{3}{5}$ and $y = 3$, find: a. x^3 b. $-y^4$	Image: Wery comfortable Image: Wery comfortable	Working with Exponents

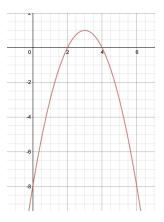

I can identify the key features of a graph of a parabola and use the appropriate terminology to describe them	4. For the following graph, state the key features - direction of the opening; coordinates of the vertex; equation of the axis of symmetry; x and y-intercepts.	Image: Somewhat comfortable Image: Somewhat comfortable <th>Key Features of a Parabola</th>	Key Features of a Parabola
I can factor polynomial expressions involving common factors, trinomials, and differences of squares	5. Factor the following: a) $x^2 - 14x + 49$ b) $x^2 - 16$ c) $7x^3 - 14x^2 - 14x$	Very comfortable Somewhat comfortable	Factoring Difference of Squares and Perfect Squares
I can determine whether a relation is linear, quadratic or neither by looking at a table of values	6. Determine whether the graph associated with the following tables of values is linear, quadratic or neither. a. $\frac{x y_1}{0 -8}$ $\frac{1 -3}{2 0}$ $\frac{3 1}{4 0}$	Image: Somewhat comfortable Image: Somewhat comfortable <th>Comparing Linear and Quadratic Relations</th>	Comparing Linear and Quadratic Relations

I can determine the measures of the sides and angles in right triangles using the primary trigonometric ratios	9. Determine the measures of side AB and angle A, if the length of side AC is 5 and side CB is 12.	می محد ا	Very comfortable Somewhat comfortable Not at all comfortable	Sine and Cosine Sine and Cosine Ratios Tangent Applications of the Tangent Ratio Pythagorean Theorem The Pythagorean Theorem
I can solve problems involving the measures of sides and angles in right triangles in real-life applications.	10. A surveyor is 40m from the edge of a building. The angle of elevation from the surveyor to the top of the building is 55° . What is the height of the building?	م جمر الجد الجد الجد	Very comfortable Somewhat comfortable Not at all comfortable	Applications of Sine and Cosine Applications of Sine and Cosine Applications of Tangent Applications of the Tangent Ratio

Solutions to Sample Questions:

1. Solve the system of equations.

2. Some students at NHS held a bake sale recently to raise money for a field trip. They charged \$7 for fruit pies and \$10 for meat pies. They sold a total of 52 pies and earned \$424. How many of each type of pie did they sell?


Let F represent the number of Fruit Pies sold. Let M represent the number of Meat Pies sold. 7F + 10M = 424 (1) F + M = 52 (2) Solve (2) for F: F = 52 - MSub this into (1) 7(52 - M) + 10M = 424 364 - 7M + 10M = 424 3M = 60M = 20

Sub M = 20 into (2): $F + 20 = 52 \rightarrow F = 32$

Therefore they sold 32 Fruit pies and 20 Meat pies

3. If
$$x = \frac{3}{5}$$
 and $y = 3$, find:
 $x^{3} = \left(\frac{3}{5}\right)^{3} = \frac{27}{125}$
b. $-y^{4} = -(3)^{4} = -(81) = -81$

4. For the following graph, state the key features a. direction of the opening; Down
b. coordinates of the vertex; (3,1)
c. equation of the axis of symmetry; x = 3
d. x and y-intercepts. y-int: (2, 0),(4, 0) y-int: (0, -8)

5. Factor the following:

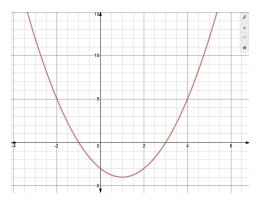
a. $x^2 - 14x + 49$ Add: -14 Mult: 49 two values that fit this process are:-7, -7 $x^2 - 14x + 49 = (x - 7)(x - 7) = (x - 7)^2$ b. $x^2 - 16$ Difference of 2 squares: (x - 4)(x + 4)

c. $7x^3 - 14x^2 - 14x$ GCF first: $7x(x^2 - 2x - 2)$ Remaining trinomial is unfactorable (but need to check...)

6. Determine whether the graph associated with the following tables of values is linear, quadratic or neither.

a.

x	3 <i>y</i> ₁	
0	-8	
1	-3	
2	0	
3	1	
4	0	
		Quadratic

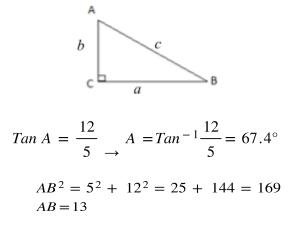

x	9 <i>y</i> ₁	
0	-2	
1	-1	
2	0	
3	1	
4	2	
	1	Linear

C.

x	9 <i>y</i> ₁
-2	-8
$^{-1}$	$^{-1}$
0	0
1	1
2	8

neither linear nor quadratic

7. Determine the equation of the graph below.


$$y = (x - 1)^2 - 4$$

8. Determine the zeros and the max/min value of $y = x^2 - 10x + 24$

For zeros: Factor $(x-6)(x-4) \rightarrow x = 6$ or x = 4

For max/min value: since it opens up \rightarrow it is a minimum value It occurs on the axis of symmetry: x = 5. Min value will occur at x = 5. $y = 5^2 - 10(5) + 24 = 25 - 50 + 24 = -49$

9. Determine the measures of side AB and angle A, if the length of AC is 5 and CB is 12.

$$\sin 67.4 = \frac{12}{AB} \to AB = \frac{12}{\sin 67.4} \to AB = 13$$

10. A surveyor is 40m from the edge of a building. The angle of elevation from the surveyor to the top of the building is 55° . What is the height of the building?

$$Tan 55 = \frac{height}{40}$$

Height = 40 Tan 55 = 57.13