Self-Assessment for Grade 12 Calculus and Vectors (MCV4U)

Students who are registered for Grade 12 Calculus and Vectors (MCV4U) may benefit from a self evaluation and review of the following sample of expectations from Grade12 Advanced Functions (MHF4U).

The questions in this self-assessment reflect some of the key ideas learned in prerequisite courses. They do not represent the problem solving approach or the rich experience that students would be exposed to in a classroom. The intention is for students to revisit some key concepts and, if needed, access review materials in an informal environment at a pace that is comfortable for the student.

Concept(s)	Sample Question	How comfortable do you feel with this concept?	Link(s) to explore concept further
I can use the laws of logarithms to simplify and evaluate numerical expressions	1. Evaluate. a) $\log _{2} 16^{3}$ b) $\log _{2} 8^{0.5}$ c) $2 \log 5+\frac{1}{2} \log 16$ d) $\log _{3} 405-\log _{3} 5$	 Very comfortable Somewhat comfortable Not at all comfortable	Properties of Logs
I can recognize the relationship between an exponential function and the corresponding logarithmic function to be that of a function and its inverse,	2. Is the inverse of $y=2^{x}$ a function? Explain your answer using algebraic and graphical reasoning.	Very comfortable Somewhat comfortable ? Not at all comfortable	Introduction to Logarithms Video

I can describe the roles of the parameters a, k, d and c in terms of transformations on the graph of $f(x)=\log _{10} x$	3. If $f(x)=\log _{3} x$ sketch the graph of $g(x)=2 f(2(x+1))-3$	 Very comfortable Somewhat comfortable Not at all comfortable	Logarithmic Functions - Part 5 Video
I can solve exponential and logarithmic equations	4. Solve. a) $5^{t}=250$ b) $4^{x+5}=64^{x}$ c) $\log _{4}(x+2)=3$	Very comfortable Somewhat comfortable Not at all comfortable	Solving Exponential Equations Video
I can solve linear and quadratic trigonometric equations, with and without graphing technology, for the domain of real values from 0 to 2π	5. Solve the equation $2 \cos ^{2} x=\sin x+1$ over the interval $0 \leq x \leq 2 \pi$ Leave your answers as exact values.	Very comfortable Somewhat comfortable \square Not at all comfortable	Introduction to Trigonometric Ratios and Special Triangles Video Solving Trigonometric Equations Video
I can sketch graphs of $y=$ $a \sin (k(x-d))+c$ and $y=$ $a \cos (k(x-d))+c$ by applying transformations to the graphs of $f(x)=\sin x$ and $f(x)=\cos x$ with angles expressed in radians	6. If $f(x)=\sin (x)$, sketch the graph of $g(x)=-f\left(2\left(x+\frac{\pi}{6}\right)\right)-1$	Very comfortable Somewhat comfortable Not at all comfortable	Graphs of Primary Trigonometric Functions Video

I can describe key features of the graphs of polynomial functions	7. Describe key features of the graph of $y=f(x)$ given below. (End behaviour, intervals of increase and decrease, and where $f(x)>0$	 Very comfortable Somewhat comfortable Not at all comfortable	Characteristics of Polynomial Functions Video
I can sketch the graph of a polynomial function given in factored form using its key features	8. Sketch the graph of $f(x)=-2(x+3)^{2}(x-1)$	Very comfortable Somewhat comfortable Not at all comfortable	Graphs of Polynomial Functions in Factored Form Video
I can sketch the graph of a simple rational function using its key features, given the algebraic representation of the function	9. Sketch the graph of $f(x)=\frac{2 x+1}{x+2}$	 Very comfortable Somewhat comfortable Not at all comfortable	Rational Functions of the Form $y=a x+b$ over cx+d

\begin{tabular}{|c|c|c|c|}
\hline I can make connections between instantaneous rates of change and average rates of change \& 10. Describe how the average rate of change can be used to determine the instantaneous rate of change in any function. \& \begin{tabular}{l}
\\
Very comfortable
Somewhat comfortable \\
Not at all comfortable
\end{tabular} \& Determining Average and Approximating Instantaneous Rates of Change for Linear, Polynomial and Rational Functions Video \\
\hline I can make connections, between the slope of a secant on the graph of a function and the average rate of change of the function over an interval \& 11. Determine the average rate of change graphically and algebraically for the function \(f(x)=2 x^{2}-5\) from \(x=1\) to \(x=2\). \& \begin{tabular}{l}
Very comfortable

Somewhat comfortable
Not at all comfortable
\end{tabular} \& Determining Average and Approximating Instantaneous Rates of Change for Linear, Polynomial and Rational Functions Part A Video

\hline I can determine the approximate slope of the tangent to a given point on the graph of a function and make connections to average and instantaneous rates of change \& 12. Determine an approximation for the instantaneous rate of change using two different methods for the below function, at the point where $x=1$. \& \begin{tabular}{l}
Very comfortable

Somewhat comfortable
Not at all comfortable

 \&

Determining Average and Approximating Instantaneous Rates of Change for Linear, Polynomial and Rational Functions More Golf Video

Generalizing Our Results: Determining Average and Approximating Instantaneous Rates of Change for Linear Polynomial and Rational Functions Video
\end{tabular}

\hline
\end{tabular}

Solutions to Sample Questions

1. Evaluate.
a) $\log _{2} 16^{3}=12$
b) $\log _{2} 8^{0.5}=1.5$
c) $2 \log 5+\frac{1}{2} \log 16=\log 5^{2}+\log 16^{\frac{1}{2}}=\log (25 \times 4)=\log 100=2$
d) $\log _{3} 405-\log _{3} 5$
$=\log _{3}\left(\frac{405}{5}\right)=\log _{3}(81)=4$
2. Is the inverse of $y=2^{x}$ a function? Explain your answer using algebraic and graphical reasoning.

Yes. For every x there is only one y -value. The function also passes the vertical line test.

4. Solve.
a) $5^{t}=250$
$t=\log _{5} 250=3.43$
b) $4^{x+5}=64^{x}$
$4^{x+5}=4^{3 x}$
$x+5=3 x$
$x=2.5$
c) $\log _{4}(x+2)=3$
$x+2=4^{3}$
$x+2=64$
$x=62$
5. Solve the equation $2 \cos ^{2} x=\sin x+1$ over the interval $0 \leq x \leq 2 \pi$ Leave your answers as exact values.

$$
\begin{aligned}
& 2 \cos ^{2} x-\sin x-1=0 \\
& 2\left(1-\sin ^{2} x\right)-\sin x-1=0 \\
& 2 \sin ^{2} x+\sin x-1=0 \\
& (\sin x+1)(2 \sin x-1)=0 \\
& \sin x=-1 \mapsto x=\frac{3 \pi}{2} \\
& \sin x=\frac{1}{2} \mapsto x=\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

6. If $f(x)=\sin (x)$, sketch the graph of
$g(x)=-f\left(2\left(x+\frac{\pi}{6}\right)\right)-1$

7. Describe key features of the graph of $y=f(x)$ given below. (End behaviour, intervals of increase and decrease, and where $f(x)>0$

- odd degree
- 3rd degree polynomial
- positive leading coefficient
- x - intercepts at $x=-1,1,3$
- y-intercepts at $y=6$
- Begins in quad III and ends in quad I

8. Sketch the graph of $f(x)=-2(x+3)^{2}(x-1)$

9. Sketch the graph of

$$
f(x)=\frac{2 x+1}{x+2}
$$

10. Describe how the average rate of change can be used to determine the instantaneous rate of change in any function.

Select two points very close to one another, e.g. a and $a+0.0001$, to approximate the instantaneous rate of change.
11. Determine the average rate of change graphically and algebraically for the function $f(x)=2 x^{2}-5$ from $x=1$ to $x=2$.

Ave rate of change:

$$
\frac{3-(-3)}{2-1}=6
$$

12. Determine an approximation for the instantaneous rate of change using two different methods for the below function, at the point where $x=6$.

Draw a tangent on the graph and determine the slope of the line which is the instantaneous rate of change m =

$m=\frac{8}{3}$
Determine the equation of the function $\rightarrow y=0.25 \times 2$
iroc $=\frac{0.25(6)^{2}-0.25(6.001)^{2}}{6-6.001}=3$

